I am an Assistant Professor for Data-driven Modeling and Artificial Intelligence in the Department of Mechanical Engineering and Materials Science at the University of Pittsburgh, since Sep. 2021. I am also a PI and senior researcher at the International Computer Science Institute (ICSI) in Berkeley. Before joining U Pitt, I was a postdoctoral researcher in the Department of Statistics at UC Berkeley, where I worked with Michael Mahoney. I was also part of the RISELab in the Department of Electrical Engineering and Computer Sciences (EECS) at UC Berkeley. Before to that, I was a postdoc at the Department of Applied Mathematics at the University of Washington (UW) working with Nathan Kutz and Steven Brunton. I earned my PhD in Statistics at the University of St Andrews, in Dec. 2017. My MSc in Applied Statistics is also from the University of St Andrews.
I am broadly interested at the intersection of deep learning, dynamical systems, and robustness—how can we build robust and intelligent dynamical systems that are computational efficient and expressive? I am also interested in leveraging tools from randomized numerical linear algebra to build modern algorithms for data-intensive applications such as fluid flows and climate science.
Full list of publications: Google Scholar.
Projects in my lab span the space between development of robust and dynamical systems inspired neural network architectures, efficient training strategies for extracting knowledge from limited data, and data-driven modeling of scientific data.
I am looking for highly motivated and driven PhD students and Postdocs. Drop me an email, if my research interests sparks your interest.
Current Students, Postdocs, and Staff:
Former students:
Email: erichson @ pitt dot edu
PhD in Statistics, 2017
University of St Andrews
MSc in Applied Statistics, 2013
University of St Andrewsy